Personal Quick Reference Sheets

(pages 333 to 346)

from: Rapid Interpretation of EKG's

by Dale Dubin, MD

COVER Publishing Co., P.O. Box 1092, Tampa, FL 33601, USA

The owner of this book may remove pages 333 through 346 to carry as a personal quick reference, however, copying for or by others is strictly prohibited. The entire text of Rapid Interpretation of EKG’s is fully protected by domestic United States copyright as well as the Universal Copyright Convention, and all rights of absolute imprimatur are enforced by COVER Publishing Co.

Rapid Interpretation of EKG's

Dr. Dubin’s classic, simplified methodology for understanding EKG’s

6th Ed.

Dale Dubin, MD

May humanity benefit from your knowledge,

Dale Dubin

Web Sites:

Physicians and medical students: www.theMDsite.com

Nurses and nurses in training: www.CardiacMonitors.com

Emergency medical personnel: www.EmergencyEKG.com
Dubin’s Method
for Reading EKG’s

1. RATE (pages 65-96)
 Say “300, 150, 100” …“75, 60, 50”
 • but for bradycardia:
 rate = cycles/6 sec. strip ∙ 10

2. RHYTHM (pages 97-202)
 Identify the basic rhythm, then scan tracing for prematurity,
 pauses, irregularity, and abnormal waves.
 • Check for: P before each QRS.
 QRS after each P.
 • Check: PR intervals (for AV Blocks).
 QRS interval (for BBB).
 • If Axis Deviation, rule out Hemiblock.

3. AXIS (pages 203-242)
 • QRS above or below baseline for Axis Quadrant
 (for Normal vs. R. or L. Axis Deviation).
 For Axis in degrees, find isoelectric QRS in a limb lead
 of Axis Quadrant using the “Axis in Degrees” chart.
 • Axis rotation in the horizontal plane: (chest leads)
 find “transitional” (isolectric) QRS.

4. HYPERTROPHY (pages 243-258)
 Check
 \[
 V_1 \begin{cases}
 P \text{ wave for atrial hypertrophy.} \\
 R \text{ wave for Right Ventricular Hypertrophy.} \\
 S \text{ wave depth in } V_1 \\
 + R \text{ wave height in } V_6 \text{ for Left Ventricular Hypertrophy.}
 \end{cases}
 \]

5. INFARCTION (pages 259-308)
 Scan all leads for:
 • Q waves
 • Inverted T waves
 • ST segment elevation or depression
 Find the location of the pathology (in the Left ventricle),
 and then identify the occluded coronary artery.
Determine Rate by Observation (pages 78-88)

Bradycardia (slow rates) (pages 90-96)
- Cycles/6 second strip × 10 = Rate
- When there are 10 large squares between similar waves, the rate is 30/minute.

Sinus Rhythm: origin is the SA Node (“Sinus Node”),
normal sinus rate is 60 to 100/minute.
- Rate more than 100/min. = Sinus Tachycardia (page 68).
- Rate less than 60/min. = Sinus Bradycardia (page 67).

Determine any co-existing, independent (atrial/ventricular) rates:
- Dissociated Rhythms: (pages 155, 157, 186-189)
 A Sinus Rhythm (or atrial rhythms) may co-exist with an independent rhythm
 from an automaticity focus of a lower level. Determine rate of each.

Irregular Rhythms: (pages 107-111)
- With Irregular Rhythms (such as Atrial Fibrillation) always note the general
 (average) ventricular rate (QRS’s per 6-sec. strip × 10) or take the patient’s pulse.
Personal Quick Reference Sheets

Rhythm (pages 97 to 111)

from: Rapid Interpretation of EKG’s
by Dale Dubin, MD
COVER Publishing Co., P.O. Box 1092, Tampa, FL 33601, USA

★ Identify basic rhythm...
...then scan entire tracing for pauses, premature beats, irregularity, and abnormal waves.

★ Always:
• Check for: P before each QRS.
 QRS after each P.
• Check: PR intervals (for AV Blocks).
 QRS interval (for BBB).
• Has QRS vector shifted outside normal range? (to rule out Hemiblock).

Irregular Rhythms (pages 107-111)

Sinus Arrhythmia (page 100)
Irregular rhythm that varies with respiration.
All P waves are identical.
Considered normal.

Wandering Pacemaker (page 108)
Irregular rhythm. P waves change shape as pacemaker location varies.
Rate under 100/minute...

...but if the rate exceeds 100/minute, then it is called
Multifocal Atrial Tachycardia (page 109)

Atrial Fibrillation (pages 110, 164-166)
Irregular ventricular rhythm.
Erratic atrial spikes (no P waves) from multiple atrial automaticity foci. Atrial discharges may be difficult to see.
Escape (pages 112-121) – the heart’s response to a pause in pacing

- An unhealthy Sinus (SA) Node may fail to emit a pacing stimulus ("Sinus Block"); this pause may evoke an escape beat from an automaticity focus.
- But a sick Sinus (SA) Node may cease pacing ("Sinus Arrest"), causing an automaticity focus to "escape" to assume pacemaker status.

Then...

- the SA Node usually resumes pacing.

Premature Beats (pages 122-145) – from an irritable automaticity focus

- An irritable automaticity focus may suddenly discharge, producing a:

 - Premature Atrial Beat (pages 124-130)
 - Premature Junctional Beat (pages 131-133)
 - Premature Ventricular Contraction (pages 134-135)

PVC’s may be: multiple, multifocal, in runs, or coupled with normal cycles.
Personal Quick Reference Sheets

Rhythm continued (pages 146 to 172)

from: Rapid Interpretation of EKG's

by Dale Dubin, MD

COVER Publishing Co., P.O. Box 1092, Tampa, FL 33601, USA

Tachyarrhythmias (pages 146-172), “focus” = automaticity focus

<table>
<thead>
<tr>
<th>Rates:</th>
<th>150</th>
<th>250</th>
<th>350</th>
<th>450</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paroxysmal Tachycardia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flutter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrillation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Paroxysmal (sudden) Tachycardia

Paroxysmal Atrial Tachycardia

An irritable atrial focus discharging at 150-250/min. produces a normal wave sequence, if P' waves are visible. (page 149)

- **P.A.T. with block**

 Same as P.A.T. but only every second (or more) P' wave produces a QRS. (page 150)

Paroxysmal Junctional Tachycardia

AV Junctional focus produces a rapid sequence of QRS-T cycles at 150-250/min. QRS may be slightly widened. (pages 151-153)

Paroxysmal Ventricular Tachycardia

Ventricular focus produces a rapid (150-250/min.) sequence of (PVC-like) wide ventricular complexes. (pages 154-158)

Flutter

Flutter...rate: 250-350/min.

Atrial Flutter

A continuous (“saw tooth”) rapid sequence of atrial complexes from a single rapid-firing atrial focus. Many flutter waves needed to produce a ventricular response. (pages 159, 160)

Ventricular Flutter (pages 161, 162) also see “Torsades de Pointes” (pages 158, 345)

A rapid series of smooth sine waves from a single rapid-firing ventricular focus; usually in a short burst leading to Ventricular Fibrillation.

Fibrillation

Fibrillation...erratic (multifocal) rapid discharges at 350 to 450/min. (pages 167-170)

Atrial Fibrillation (pages 110, 164-166)

Multiple atrial foci rapidly discharging produce a jagged baseline of tiny spikes. Ventricular (QRS) response is irregular.

Ventricular Fibrillation (pages 167-170)

Multiple ventricular foci rapidly discharging produce a totally erratic ventricular rhythm without identifiable waves. Needs immediate treatment.
Personal Quick Reference Sheets

Rhythm: (“heart”) blocks (pages 173 to 202)

from: *Rapid Interpretation of EKG’s*

by Dale Dubin, MD

COVER Publishing Co., P.O. Box 1092, Tampa, FL 33601, USA

Sinus (SA) Block

(page 174)

An unhealthy Sinus (SA) Node misses one or more cycles (sinus pause)...

AV Block

(pages 176-189)

Blocks that delay or prevent atrial impulses from reaching the ventricles.

1° AV Block

…prolonged PR interval (pages 176-178).

- PR interval is prolonged to greater than .2 sec (one large square).

2° AV Block

…some P waves without QRS response (page 179-185)

- Wenckebach ...PR gradually lengthens with each cycle until the last P wave in the series does not produce a QRS.
- Mobitz ...some P waves don’t produce a QRS response. If “intermittent,” an occasional QRS is dropped.
- More advanced Mobitz block may produce a 3:1 (AV) pattern or even higher AV ratio (page 181).

2:1 AV Block

…may be Mobitz or Wenckebach.

- PR length and QRS width or vagal maneuvers help differentiate.

3° (“complete”) AV Block

…no P wave produces a QRS response (pages 186-190)

- 3° Block: P waves—SA Node origin.
- QRS’s—if narrow, and if the ventricular rate is 40 to 60 per min., then origin is a Junctional focus.
- 3° Block: P waves—SA Node origin.
- QRS’s—if PVC-like, and if the ventricular rate is 20 to 40 per min., then origin is a Ventricular focus.

Bundle Branch Block

…find R,R’ in right or left chest leads (pages 191-202)

- **Right BBB** (pages 194-196)
- **Left BBB** (pages 194-197)

Hemiblock

…block of Anterior or Posterior fascicle of the Left Bundle Branch.

- **Anterior Hemiblock** (pages 297-299)
- **Posterior Hemiblock** (pages 300-302)
Personal Quick Reference Sheets

Axis (pages 203 to 242)

from: *Rapid Interpretation of EKG’s*

by Dale Dubin, MD

COVER Publishing Co., P.O. Box 1092, Tampa, FL 33601, USA

General Determination of Electrical Axis (pages 203-231)

Is QRS positive (верху) or negative (внизу) in leads I and AVF?

Is Axis Normal? (page 227)

QRS in lead I (pages 215-222)

...if the QRS is Positive (mainly above baseline), then the Vector points to positive (patient's left) side.

Normal:

QRs upright in I and AVF

“two thumbs-up” sign

QRS in lead AVF (pages 223-226)

...if the QRS is mainly Positive, then the Vector must point downward to positive half of the sphere.

Axis in Degrees (pages 233, 234) *(Frontal Plane)*

After locating Axis Quadrant, find limb lead where QRS is most isoelectric:

Extreme Right Axis Deviation

<table>
<thead>
<tr>
<th>lead</th>
<th>Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>-90°</td>
</tr>
<tr>
<td>AVL</td>
<td>-120°</td>
</tr>
<tr>
<td>III</td>
<td>-150°</td>
</tr>
<tr>
<td>AVF</td>
<td>-180°</td>
</tr>
</tbody>
</table>

Right Axis Deviation

<table>
<thead>
<tr>
<th>lead</th>
<th>Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVF</td>
<td>$+180^\circ$</td>
</tr>
<tr>
<td>II</td>
<td>$+150^\circ$</td>
</tr>
<tr>
<td>AVR</td>
<td>$+120^\circ$</td>
</tr>
<tr>
<td>I</td>
<td>$+90^\circ$</td>
</tr>
</tbody>
</table>

Left Axis Deviation

<table>
<thead>
<tr>
<th>lead</th>
<th>Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>-90°</td>
</tr>
<tr>
<td>AVR</td>
<td>-60°</td>
</tr>
<tr>
<td>II</td>
<td>-30°</td>
</tr>
<tr>
<td>AVF</td>
<td>0°</td>
</tr>
</tbody>
</table>

Normal Range

<table>
<thead>
<tr>
<th>lead</th>
<th>Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVF</td>
<td>0°</td>
</tr>
<tr>
<td>III</td>
<td>$+30^\circ$</td>
</tr>
<tr>
<td>AVL</td>
<td>$+60^\circ$</td>
</tr>
<tr>
<td>I</td>
<td>$+90^\circ$</td>
</tr>
</tbody>
</table>

Axis Rotation (left/right) in the Horizontal Plane (pages 236-242)

Find transitional (isoelectric) QRS in a chest lead.
Hypertrophy (pages 243 to 258)

from: *Rapid Interpretation of EKG’s*

by Dale Dubin, MD

COVER Publishing Co., P.O. Box 1092, Tampa, FL 33601, USA

Atrial Hypertrophy (pages 245-249)

Right Atrial Hypertrophy (page 248)

- large, diphasic P wave with tall initial component.

Left Atrial Hypertrophy (page 249)

- large, diphasic P wave with wide terminal component.

Ventricular Hypertrophy (pages 250-258)

Right Ventricular Hypertrophy (pages 250-252)

- R wave greater than S in V1, but R wave gets progressively smaller from V1 - V6.
- S wave persists in V5 and V6.
- R.A.D. with slightly widened QRS.
- Rightward rotation in the horizontal plane.

Left Ventricular Hypertrophy (pages 253-257)

\[
\text{S wave in V1 (in mm.)} + \text{R wave in V5 (in mm.)} \]
\[
\text{Sum in mm. is more than 35 mm. with L.V.H.}
\]

- L.A.D. with slightly widened QRS.
- Leftward rotation in the horizontal plane.

Inverted T wave:

- slants downward gradually,
- but up rapidly.
Infarction (pages 259 to 308)

Q wave = Necrosis (significant Q’s only) (pages 272-284)
- Significant Q wave is one millimeter (one small square) wide, which is .04 sec. in duration…
 … or is a Q wave 1/3 the amplitude (or more) of the QRS complex.
- Note those leads (omit AVR) where significant Q’s are present
 … see next page to determine infarct location, and to identify the coronary vessel involved.
- Old infarcts: significant Q waves (like infarct damage) remain for a lifetime. To determine if an infarct is acute, see below.

ST (segment) elevation = (acute) Injury (pages 266-271) (also Depression)
- Signifies an acute process, ST segment returns to baseline with time.
- ST elevation associated with significant Q waves indicates an acute (or recent) infarct.
- A tiny “non-Q wave infarction” appears as significant ST segment elevation without associated Q’s. Locate by identifying leads in which ST elevation occurs (next page).
- ST depression (persistent) may represent “subendocardial infarction,” which involves a small, shallow area just beneath the endocardium lining the left ventricle. This is also a variety of “non-Q wave infarction.” Locate in the same manner as for infarction location (next page).

T wave inversion = Ischemia (pages 264, 265)
- Inverted T wave (of ischemia) is symmetrical (left half and right half are mirror images). Normally T wave is upright when QRS is upright, and vice versa.
- Usually in the same leads that demonstrate signs of acute infarction (Q waves and ST elevation).
- Isolated (non-infarction) ischemia may also be located; note those leads where T wave inversion occurs, then identify which coronary vessel is narrowed (next page).

NOTE: Always obtain patient’s previous EKG’s for comparison!
Infarction Location — and — Coronary Vessel Involvement (pages 259 to 308)

from: Rapid Interpretation of EKG’s
by Dale Dubin, MD
COVER Publishing Co., P.O. Box 1092, Tampa, FL 33601, USA

Coronary Artery Anatomy (page 291)

Infarction Location/Coronary Vessel Involvement (pages 278-294)

Posterior
- large R with ST depression in V₁ & V₂
- mirror test or reversed transillumination test (Right Coronary Artery) (pages 282-286)

Lateral
- Q’s in lateral leads I and AVL (Circumflex Coronary Artery) (pages 280, 292)

Inferior
- (diaphragmatic) Q’s in inferior leads II, III, and AVF (R. or L. Coronary Artery) (pages 281, 294)

Anterior
- Q’s in V₁, V₂, V₃, and V₄ (Anterior Descending Coronary Artery) (pages 278, 292)
Pulmonary Embolism (pages 312, 313)
- S\(_1\), Q\(_3\), R\(_3\) – wide S in I, large Q and inverted T in III.
- acute Right BBB (transient, often incomplete)
- R.A.D. and clockwise rotation
- inverted T waves V\(_1\) → V\(_4\) and ST depression in II.

Artificial Pacemakers (pages 321-326)
Modern artificial pacemakers have sensing capabilities and also provide a regular pacing stimulus. This electrical stimulus records on EKG as a tiny vertical spike that appears just before the “captured” cardiac response.

Demand Pacemakers (page 301)
- are “triggered” (activated) when the patient’s own rhythm ceases or slows markedly.
- are “inhibited” (cease pacing) if the patient’s own rhythm resumes at a reasonable rate.
- will “reset” pacing (at same rate) to synchronize with a premature beat.

Pacemaker Impulse (delivery modes)
Ventricular Pacemaker (page 323) (electrode in Right Ventricle)	(Asynchronous) Epicardial Pacemaker
Ventricular impulse not linked to atrial activity.	Atrial Synchronous Pacemaker (page 323)
P wave sensed, then after a brief delay, ventricular impulse is delivered.	Dual Chamber (AV sequential) Pacemaker (page 323)
External Non-invasive Pacemaker (page 326)	
Electrolytes

Potassium (pages 314, 315)

- Increased K^+ (page 314) (hyperkalemia)

- Decreased K^+ (pages 315) (hypokalemia)

Calcium (page 316)

- Hyper Ca^{++}
 - short QT

- Hypo Ca^{++}
 - prolonged QT

Digitalis (pages 317-319)

- EKG appearance with digitalis (“digitalis effect”)
 - remember Salvador Dali.
 - T waves depressed or inverted.
 - QT interval shortened.

- Digitalis Excess \rightarrow Digitalis Toxicity (irritable foci firing rapidly)
 - SA Block
 - P.A.T. with Block
 - AV Blocks
 - AV Dissociation
 - Atrial Fibrillation
 - Junctional or Ventricular Tachycardia
 - multiple P.V.C.’s
 - Ventricular Fibrillation

Quinidine (page 320)

- EKG appearance with quinidine (page 320)

- Excess quinidine or other medications that block potassium channels (or even low serum potassium) may initiate… (page 158)

Quinidine Effects

- Torsades de Pointes
Dubin’s Quickie Conversion—for—
Patient’s Weight from Pounds to Kilograms

Patient wt. in kg. = Half of patient’s wt. (in lb.) minus 1/10 of that value.

Examples:
- 180 lb. patient (becomes 90 minus 9) is 81 kg
- 160 lb. patient (becomes 80 minus 8) is 72 kg
- 140 lb. patient (becomes 70 minus 7) is 63 kg.

Modified Leads—for—
Cardiac Monitoring

Locations are approximate. Some minor adjustment of electrode positions may be necessary to obtain the best tracing. Identify the specific lead on each strip placed in the patient’s record.

<table>
<thead>
<tr>
<th>Sensor Electrode</th>
<th>Identification</th>
<th>Color (inconsistent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ R (or RA)</td>
<td>red</td>
<td></td>
</tr>
<tr>
<td>– L (or LA)</td>
<td>white</td>
<td></td>
</tr>
<tr>
<td>G (or RL)</td>
<td>variable</td>
<td></td>
</tr>
</tbody>
</table>

* Ground, Neutral or Reference

Modified Lead I

Modified Lead II

Conventional Lead

To make this MCI_1 move the electrode to same (mirror) position on the patient’s left chest.